α-Synuclein aggregates inhibit ESCRT-III through sequestration and collateral degradation

Output Details

Preprint January 29, 2025

Published September 10, 2025

α-Synuclein aggregation is a hallmark of Parkinson’s disease and related synucleinopathies. Extracellular α-synuclein fibrils enter naive cells via endocytosis, followed by transit into the cytoplasm to seed endogenous α-synuclein aggregation. Intracellular aggregates sequester numerous proteins, including subunits of the endosomal sorting complexes required for transport (ESCRT)-III system for endolysosome membrane repair, but the toxic effects of these events remain poorly understood. Using cellular models and *in vitro* reconstitution, we found that α-synuclein fibrils interact with a conserved α-helix in ESCRT-III proteins. This interaction sequesters ESCRT-III subunits and triggers their proteasomal destruction in a process of “collateral degradation.” These twin mechanisms deplete the available ESCRT-III pool, initiating a toxic feedback loop. The ensuing loss of ESCRT function compromises endolysosome membranes, thereby facilitating escape of aggregate seeds into the cytoplasm, facilitating a “second wave” of templated aggregation and ESCRT-III sequestration. We suggest that collateral degradation and the triggering of self-perpetuating systems are general mechanisms of sequestration-induced proteotoxicity.
Tags
  • Original Research
Aligning Science Across Parkinson's
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.