A lipid transfer-dependent feedback loop activates ATG9A compartments in autophagy initiation
Output Details
Description
Autophagy degrades cellular material by sequestering it in autophagosomes, which form de novo from precursors called phagophores. Phagophore assembly and expansion require ATG9A-positive seed compartments, the lipid transfer protein ATG2A, and the class III phosphatidylinositol 3-phosphate kinase complex I (PI3KC3-C1). PI3KC3-C1 synthesizes phosphatidylinositol 3-phosphate (PI3P), a key lipid that drives downstream processes for phagophore expansion, including ATG8 lipidation. We find that ATG9A compartments contain only traces of phosphatidylinositol (PI), likely insufficient for efficient PI3P production or recruitment of PI3P-binding effectors. Nevertheless, ATG2A is recruited to these compartments and mediates lipid transfer, including PI, into them. Remarkably, even without detectable PI3P, ATG9A compartments can support ATG8 lipidation, and ATG8 proteins themselves enhance ATG2A-mediated lipid transfer. In cells, ATG2A is essential for the appearance of PI3P on ATG9A compartments. Together, these findings support a model in which a lipid transfer-driven feedback loop, rather than pre-existing PI content, is required to activate ATG9A compartments for phagophore expansion.
Identifier (DOI)
10.1101/2025.08.16.670665