This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
In situ structural analysis reveals membrane shape transitions during autophagosome formation
Published September 19, 2022
Output Details
Preprint May 2, 2022
Published September 19, 2022
Description
Autophagosomes are unique organelles which form de novo as double-membrane vesicles engulfing cytosolic material for destruction. Their biogenesis involves a series of membrane transformations with distinctly shaped intermediates whose ultrastructure is poorly understood. Here, we combine cell biology, correlative cryo-electron tomography (ET) and novel data analysis to reveal the step-by-step structural progression of autophagosome biogenesis at high resolution directly within yeast cells. By mapping individual structures onto a timeline based on geometric features, we uncover dynamic changes in membrane shape and curvature. Moreover, we reveal the organelle interactome of growing autophagosomes, highlighting a polar organization of contact sites between the phagophore and organelles such as the vacuole and the ER. Collectively, these findings have important implications for the contribution of different membrane sources during autophagy and for the forces shaping and driving phagophores towards closure without a templating cargo.
Identifier (DOI)
10.1073/pnas.2209823119