Catalog

ASAP is committed to accelerating the pace of discovery and informing a path to a cure for Parkinson’s disease through collaboration, research-enabling resources, and data sharing. We’ve created this catalog to showcase the research outputs and tools developed by ASAP-funded programs.

Article

Global ubiquitylation analysis of mitochondria in primary neurons identifies physiological Parkin targets following activation of PINK1

Published: Mutations in PINK1 and Parkin are implicated in PD via abherrant mitophagy. The authors identified ubiquitylated substrates of endogenous Parkin in mouse neurons by proteomic analysis. They identified and validated 22 protein targets of Parkin that are conserved in human neurons providing a functional Parkin landscape in neuronal cells. View original preprint.

Article

In situ structural analysis reveals membrane shape transitions during autophagosome formation

Preprint: A hallmark of PD is the failure of quality control mechanisms in the cell, such as autophagy. The authors combined cell biology with correlative cryo-electron tomography in yeast cells to show a high resolution stepwise structural progression of autophagosome biogenesis. Further, they revealed the organelle interactome for growing autophagosomes.

Article

Global ubiquitylation analysis of mitochondria in primary neurons identifies endogenous Parkin targets following activation of PINK1

Published: Loss-of-function mutations in Parkin cause disruption of mitophagy and are associated with PD. Yet, much of the biology surrounding Parkin function has taken place in artificial cell systems. The authors used human neurons to identify and validate 22 protein targets of Parkin, providing a functional Parkin landscape in neuronal cells.

Protocol

Design and preparation of synthetic reference peptides for APP/Aβ TOMAHAQ proteomics, version 2

This protocol describes the design and preparation of synthetic reference peptides for APP/Aβ TOMAHAQ proteomics.