This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Insights into VPS13 properties and function reveal a new mechanism of eukaryotic lipid transport
Output Details
Description
The occurrence of protein mediated lipid transfer between intracellular membranes has been known since the late 1960's. Since these early discoveries, numerous proteins responsible for such transport, which often act at membrane contact sites, have been identified. Typically, they comprise a lipid harboring module thought to shuttle back and forth between the two adjacent bilayers. Recently, however, studies of the chorein domain protein family, which includes VPS13 and ATG2, has led to the identification of a novel mechanism of lipid transport between organelles in eukaryotic cells mediated by a rod-like protein bridge with a hydrophobic groove through which lipids can slide. This mechanism is ideally suited for bulk transport of bilayer lipids to promote membrane growth. Here we describe how studies of VPS13 led to the discovery of this new mechanism, summarize properties and known roles of VPS13 proteins, and discuss how their dysfunction may lead to disease.
Identifier (DOI)
10.1016/j.bbalip.2021.159003