L1 retrotransposons drive human neuronal transcriptome complexity and functional diversification

Output Details

The genetic mechanisms underlying the expansion in size and complexity of the human brain remains poorly understood. L1 retrotransposons are a source of divergent genetic information in hominoid genomes, but their importance in physiological functions and their contribution to human brain evolution is largely unknown. Using multi-omic profiling we here demonstrate that L1-promoters are dynamically active in the developing and adult human brain. L1s generate hundreds of developmentally regulated and cell-type specific transcripts, many which are co-opted as chimeric transcripts or regulatory RNAs. One L1-derived lncRNA, LINC01876, is a human-specific transcript expressed exclusively during brain development. CRISPRi-silencing of LINC01876 results in reduced size of cerebral organoids and premature differentiation of neural progenitors, implicating L1s in human-specific developmental processes. In summary, our results demonstrate that L1-derived transcripts provide a previously undescribed layer of primate- and human-specific transcriptome complexity that contributes to the functional diversification of the human brain.