Single-nucleus multiomic profiling of the aging mouse substantia nigra reveals conserved gene alterations linked to Parkinson’s disease
Output Details
Description
Parkinson’s disease (PD) is a prevalent neurodegenerative disorder predominantly affecting individuals over 60. Its motor symptoms stem from the deterioration of dopaminergic neurons within the substantia nigra. Despite aging being a significant risk factor, the specific mechanisms linking aging and PD pathology remain unclear. Leveraging advancements in single-cell genomics, this study utilized single-nucleus multiome sequencing to capture transcriptomic and epigenetic profiles from 40,125 cells across the lifespan of the mouse substantia nigra. Our analysis pinpointed age-associated changes at a cell-type-specific level, revealing a subset of genes that increasingly express with age and are enriched in PD-related pathways, notably in oligodendrocytes at late aging stages. Integration with five public PD single-cell RNA-seq datasets highlighted 85 genes consistently differentially expressed with aging and PD. Key genes such as Hsp90aa1 and Hsp90ab1 were upregulated at late aging stages in oligodendrocytes, microglia, and glutamatergic neurons. Additionally, Apoe in microglia and genes related to protein folding in oligodendrocytes were upregulated at late aging stages, while genes involved in myelination were downregulated at early aging stages in oligodendrocyte. Our multiomic atlas underscores the substantial regulatory networks changes during aging that may predispose to PD, providing valuable insights for furthering understanding of PD pathogenesis and potential therapeutic targets.