The calcium sensor synaptotagmin-1 is critical for phasic axonal dopamine release in the striatum and mesencephalon, but is dispensable for basic motor behaviors in mice

Output Details

In this work, we conditionally deleted the calcium sensor synaptotagmin-1 (Syt1) in DA neurons (cKODA mice) to abrogate most activity-dependent axonal DA release in the striatum and mesencephalon. Syt1 cKODA mice showed intact performance in multiple unconditioned DA-dependent motor tasks, suggesting that activity-dependent DA release is dispensable for such basic motor functions. Basal extracellular levels of DA in the striatum were unchanged, suggesting that a basal tone of extracellular DA is sufficient to sustain basic movement. We also found multiple adaptations in the DA system of cKODA mice, similar to those happening at early stages of PD. Taken together, our findings reveal the striking resilience of DA-dependent motor functions in the context of a near-abolition of phasic DA release, shedding new light on why extensive loss of DA innervation is required to reveal motor dysfunctions in PD.
Tags
  • Dopamine
  • Synaptic transmission