Our Year in Review: Insights, outcomes, and highlights that shaped 2025. Read the full report!
Aligning Science Across Parkinson's Logo Text

Leucine-rich repeat kinase 2 impairs the release sites of Parkinson’s disease vulnerable dopamine axons

Output Details

The end-stage pathology of Parkinson’s disease (PD) involves the loss of dopamine-producing neurons in the substantia nigra pars compacta (SNc). However, synaptic deregulation of these neurons begins much earlier. Understanding the mechanisms behind synaptic deficits is crucial for early therapeutic intervention, yet these remain largely unknown. In the SNc, different dopamine neuron subtypes show varying susceptibility patterns to PD, complicating our understanding. This study uses intersectional genetic mouse models to uncover synaptic perturbations in vulnerable dopamine neurons, focusing on the LRRK2 kinase, a protein closely linked to PD. Through a combination of immunofluorescence and advanced proximity labeling methods, we found higher LRRK2 expression in the most vulnerable dopamine neuron subclusters. High-resolution imaging revealed that pathogenic LRRK2 disrupts release sites in vulnerable dopamine axons, leading to decreased in vivo evoked striatal dopamine release in mice with LRRK2 mutations. Proteomic and biochemical analyses indicate that mutant LRRK2 increases the phosphorylation of RAB3 proteins, reducing their interactions with RIM1/2 effector proteins and impacting their synaptic functions. Overall, this research highlights the cell-autonomous dysfunctions caused by mutant LRRK2 in the neurons that are primarily affected by the disease. It also provides a framework for therapeutic strategies for early nigrostriatal synaptic deficits in PD.

Meet the Authors

Aligning Science Across Parkinson's
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.