This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Modeling gene-environment interactions in Parkinson’s Disease: Helicobacter pylori infection of Pink1-/- mice induces CD8 T cell-dependent motor and cognitive dysfunction.
Output Details
Description
Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by progressive loss of motor function. Diagnosis occurs late: after motor symptom development downstream of the irreparable loss of a large proportion of the dopaminergic neurons in the substantia nigra of the brain. Understanding PD pathophysiology in its pre-motor prodromal phase is needed for earlier diagnosis and intervention. Genetic risk factors, environmental triggers, and dysregulated immunity have all been implicated in PD development. Here, we demonstrate in a mouse model deficient in the PD-associated gene Pink, that infection with the human PD-associated gastric bacterium Helicobacter pylori leads to development of motor and cognitive signs resembling prodromal features of PD. This was also associated with proliferation and activation of primary mitochondria-reactive CD8 T cells and infiltration of CD8 T cells into the brain. Development of the motor and cognitive phenotypes in the infected Pink1-/- mice was abrogated when CD8 T cells were depleted prior to infection. We anticipate that this new model, which integrates genetic PD susceptibility, a PD-relevant environmental trigger, and specific immune changes that are required for symptom development, will be a valuable tool for increasing our understanding of this complex disease.
Identifier (DOI)
10.1101/2024.02.25.580545