This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.
Rapid iPSC inclusionopathy models shed light on formation, consequence, and molecular subtype of α-synuclein inclusions
Published July 29, 2024
Output Details
Preprint May 30, 2023
Published July 29, 2024
Description
Intracellular inclusions accompanying neurodegeneration are histopathologically and ultrastructurally heterogeneous but the significance of this heterogeneity is unclear. iPSC models, while promising for disease modeling, do not form inclusions in a reasonable timeframe and suffer from limited tractability. Here, we developed an iPSC toolbox utilizing piggyBac-based or targeted transgenes to rapidly induce CNS cells with concomitant expression of aggregation-prone proteins. This system is amenable to screening and longitudinal tracking at single-cell and single-inclusion resolution. For proof-of-principle, cortical neuron α-synuclein “inclusionopathy” models were engineered to form inclusions through exogenous seeding or α-synuclein mutation. These models recapitulated known fibril- and lipid-rich inclusion subtypes, uncovering dynamic interactions between them, and refined the classification of inclusions in postmortem brain. Genetic-modifier and protein-interaction screens pinpointed proteins like RhoA whose sequestration into specific inclusion subtypes is likely to be toxic. This iPSC platform should enhance our understanding of proteinaceous pathologies in neurodegeneration and facilitate therapeutics development.
Identifier (DOI)
10.1016/j.neuron.2024.06.002